Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan Gao,* Zhen-Zhong Lu, Li-Hua Huo, Xian-Fa Zhang and Hui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.039 wR factor = 0.108 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A one-dimensional hydrogen-bonding chain of diacetatobis(3-hydroxypyridine)copper(II)

The asymmetric unit of the title complex, $[Cu(C_2H_3O_2)_2 - (C_5H_5NO)_2]$, consists of two half-units of $[Cu(ac)_2(3-PyOH)_2]$ (ac is acetate and 3-PyOH is 3-hydroxypyridine). The two molecules in the unit cell are held together *via* hydrogen bonds in a chain structure; the Cu···Cu separation is 5.482 (2) Å. The Cu^{II} atoms in the two neutral units lie on special positions with inversion symmetry, and both show elongated octahedral geometry, defined by four acetate O atoms and two *endo*-N atoms of two 3-PyOH ligands.

Received 2 August 2004 Accepted 27 August 2004 Online 4 September 2004

Comment

In recent decades, a particularly active approach in the construction of supramolecular complexes with extended architectures has been focused on the utilization of noncovalent linkages, especially hydrogen-bonding interactions (Iglesias et al., 2003; Braga et al., 2003). In contrast to other weak linkages, hydrogen-bonding interactions between ligands are specific and directional, and have little dependence on the properties of metal ions, which play a critical role in the structures and functions of the products (Subramanian & Zaworotko, 1994). In this sense, bifunctional hydroxypyridine (PyOH) molecules, including 2-OH, 3-OH and 4-OH, are good candidates for the construction of supramolecular complexes, which not only are capable of binding to metal centers but also can form regular hydrogen bonds by functioning as both a hydrogen-bond donors and acceptors (Breeze & Wang, 1993). Among the isomers of PyOH, only 3-PyOH does not have the corresponding tautomeric form, viz. 3-pyridone; the N atom of this ligand is, therefore, a preferred binding site for metal ions, and the hydroxyl O atom may become a perfect hydrogen-bonding site. However, hydrogenbonding supramolecular complexes based on 3-PyOH are relatively rare (Castillo et al., 2000; Kawata et al., 1997).

Recently, some hydrogen-bonding layer architectures of two cobalt(II) and one copper(II) complexes involving 3- or 4-PyOH ligands have been reported by our group (Gao, Zhang *et al.*, 2004; Gao, Lu *et al.*, 2004; Lu *et al.*, 2004). In this paper, a novel one-dimensional hydrogen-bonded complex,

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEPII (Johnson, 1976) plot of (I), with 30% probability displacement ellipsoids.

Figure 2

The packing of (I), with the $O-H \cdots O$ hydrogen bonds denoted by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

 $[Cu(ac)_2(3\mbox{-}PyOH)_2]_2$ (ac is acetate and 3-PyOH is 3hydroxypyridine), (I), is described.

The asymmetric unit of (I) consists of half-units of $[Cu(ac)_2(3-PyOH)_2]$. The two molecules in the unit cell are held together via hydrogen bonds between the hydroxyl O atoms of the 3-PyOH ligand and the acetate O atoms (Fig. 1). The two Cu^{II} atoms are each located on an inversion center, displaying similar elongated octahedral environments defined by four acetate O atoms and two endo-N atoms of two 3-PyOH ligands. The Cu1-N1 bond length is 1.997 (2) Å, somewhat shorter than that for Cu2-N2 [2.014 (2) Å], while Cu1-O2 [2.586 (2) Å] is also shorter than Cu2-O5[2.614 (2) Å].

The dihedral angle between the pyridine rings of the two neutral units is 76.41 (4)°. These mononuclear units are further linked sequentially to each other via O-H···O hydrogen bonds between the uncoordinated hydroxyl O atoms of 3-PyOH ligands and the O atoms of acetate groups into an infinite chain, with a Cu···Cu distance of 5.482 (2) Å. The $O \cdots O$ distances and $O - H \cdots O$ angles are in the ranges 2.618 (3)–2.632 (3) Å and 171 (4)–175 (4) $^{\circ}$, respectively (Table 1 and Fig. 2).

Experimental

The title complex was prepared by the addition of Cu(Ac)₂·H₂O (2 mmol) to an ethanol solution of 3-PyOH (6 mmol). The mixed solution was allowed to evaporate at room temperature, and blue single crystals were isolated from the solution after 8 d. Analysis calculated for C₂₈H₃₂Cu₂N₄O₁₂: C 45.22, H 4.34, N 7.53%; found: C 44.98, H 4.50, N 7.56%

Crystal data

$[Cu(C_{2}H_{3}O_{2})_{2}(C_{5}H_{5}NO)_{2}]$	<i>Z</i> = 2
$M_r = 371.83$	$D_x = 1.546 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
$a = 8.9725 (18) \text{\AA}$	Cell parameters from 6857
b = 10.138(2) Å	reflections
c = 10.247 (2) Å	$\theta = 3.4-27.5^{\circ}$
$\alpha = 114.92 \ (3)^{\circ}$	$\mu = 1.40 \text{ mm}^{-1}$
$\beta = 100.20 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 100.07 (3)^{\circ}$	Prism, blue
$V = 798.8 (4) \text{ Å}^3$	$0.39 \times 0.28 \times 0.18 \text{ mm}$

3601 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0653P)^2$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.1657P]

 $\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$

 $R_{\rm int}=0.026$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -11 \rightarrow 10$ $k = -13 \rightarrow 13$

 $l = -12 \rightarrow 13$

2890 reflections with $I > 2\sigma(I)$

Data collection

Rigaku R-AXIS RAPID diffractometer w scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.631, \ T_{\max} = 0.778$ 7445 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.108$ S = 1.063601 reflections 219 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.979 (2)	Cu2-N2	2.014 (2)
Cu1-N1	1.997 (2)	O1-C2	1.272 (3)
Cu1-O2	2.586 (2)	O2-C2	1.249 (3)
Cu2-O4	1.975 (2)	O4-C9	1.275 (3)
Cu2-O5	2.614 (2)	O5-C9	1.244 (3)
O1-Cu1-O2	55.76 (7)	O4-Cu2-O5	55.23 (7)
O1-Cu1-N1	89.89 (8)	O4-Cu2-N2	90.02 (8)
O2-Cu1-N1	93.72 (8)	N2-Cu2-O5	89.87 (8)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H15\cdots O5$	0.85(3)	1.78 (3)	2.632 (3)	175 (4)
$O6-H16\cdots O2$	0.85(3)	1 78 (1)	2.618 (3)	171 (4)

H atoms on C atoms were placed in calculated positions [C-H =0.93 (aromatic) or 0.96 Å (methyl), and $U_{iso}(H) = 1.2U_{eq}(aromatic C)$ and $1.5U_{eq}$ (methyl C)] using the riding-model approximation. The hydroxyl H atoms were located in a difference map and refined with O-H distance restraints of 0.85 (1) Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), and the Scientific Fund of Remarkable Teachers of Heilongjiang Province, Heilongjiang University, for supporting this work.

References

Braga, D., Maini, L., Polito, M., Tagliavini, E. & Grepioni, F. (2003). Coord. Chem. Rev. 246, 53–71.

- Breeze, S. R. & Wang, S. (1993). Inorg. Chem. 32, 5981-5989.
- Castillo, O., Luque, A., Iglesias, S., Vitoria, P. & Román, P. (2000). New J. Chem. 24, 771–775.
- Gao, S., Lu, Z.-Z., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m609–m610.
- Gao, S., Zhang, X.-F., Huo, L.-H., Lu, Z.-Z., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1128–m1130.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Iglesias, S., Castillo, O., Luque, A. & Román, P. (2003). *Inorg. Chim. Acta*, **349**, 273–278.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kawata, S., Breeze, S. R., Wang, S., Greedan, J. E. & Raju, N. P. (1997). Chem. Commun. pp. 717–718.
- Lu, Z.-Z., Gao, S., Huo, L.-H., Zhang, X., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m811–m813.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Subramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev. 137, 357– 401.